Wednesday, 23 September 2009

e-Agri on BBC Radio 4

Some of the e-Agri research at Manchester was recently broadcast on the BBC Radio 4 programme; "Costing the Earth". Dr Grieve was interviewed by Tom Heap about the integrated Sensors and RFID (Radio Frequency Identification Device) technology that the team are working on alongside academic and industrial colleagues.

The radio broadcast maybe listened to be visiting the BBC's website at the following URL, the interview begins around 17 minutes into the programme:

http://www.bbc.co.uk/programmes/b00mg2v8


Smart food sensors could push down price of fruit ‘n’ veg

The price of fresh food in shops and supermarkets could be reduced if innovative work at The University of Manchester to develop intelligent low-cost sensors is successful. Scientists and engineers at The Syngenta Sensors University Innovation Centre are working on technology that will allow more scientific ‘best before’ dates to be set by food producers and retailers. Researchers are looking at how sensors integrated with Oyster-card type Radio Frequency ID (RFID) technology can be used to track real-time stresses suffered by perishable goods from when it leaves the farm to when it arrives with the retailer. Britain throws away £20 billion of food every year and food makes up the single largest source of commercial waste at roughly 21 per cent.
Now chemists, engineers and physicists are working together to develop a system that uses battery-free RFID tags to monitor and record stress profiles, which costs around 10p to 20p – rather than £20 at present. It is predicted this low-cost will help fuel the widescale deployment of the technology. Dr Bruce Grieve, Director of the Syngenta Sensors University Innovation Centre at The University of Manchester, said: “There are both economic and environmental drivers behind the desire for this kind of technology. “The economic motivation for companies in the food supply chain is to reduce the hidden costs that we all bear when purchasing fresh produce. Only a percentage of that produce makes it all the way to our plates and so when we shop we are paying an invisible fee for these losses. “Through real-time inventory management of produce, based upon accurate forecasts of shelf life on a box-by-box basis, these loses may be minimised and costs recouped. “As consumers we may see some of this saving reflected in cheaper fruit and vegetables, while the companies that introduce and invest in this technology will also gain economically.”

Dr Grieve also highlights the environmental benefits of the technology, which should reduce the amount of unfit produce that reaches the shelves. “This will help reduce fuel usage by minimising transportation of the stressed and rejected produce. It could also help reduce the environmental impact of unfit produce going into landfill,” he said. “But most importantly for climate change, it could also reduce the total synthetic fertilisers and nitrogen usage per tonne of food consumed. This currently accounts for around 70 per cent of carbon used in typical crop production.” Dr Grieve and colleagues will be working with colleagues in industry to integrate knowledge of the way seeds have been bred and farming techniques with ‘stress profiles’ from sensors to create more meaningful best before dates. Dr Grieve added: “The first generation of this technology will be based upon silicon but our plan is to the use plastic printed electronics in later generations to make the sensor tags compatible in cost with the humble bar code. “This is adventurous research and won’t be with us tomorrow. Realistically we will have ironed out the major scientific hurdles by around the end of 2010 and then there is a significant step to translate this into a final device using appropriate manufacturing techniques. “The commercial silicon sensor-tag could be with us in about three to give years where as the printed plastic equivalent may be here in 2015.”

Wednesday, 16 September 2009

Microfluidic System Engineering for Enzyme Analysis in Genetically Modified Sugarcane

Schematic of the components of Integrated Cellulase Unit, ICU

Motivation and Drivers

Increasing and continuing dependence on dwindling petroleum resources has lead to an increase in oil prices and the concentration of green house gases. Thus, it is desirable to make a transition from non-renewable resources to renewable resources such as biofuels (e.g. bioethanol, biodiesel), solar, wind, and hydro.

Bioethanol is believed to have a potential to decrease our dependence on petroleum-derived transportation fuels. Currently, sugarcane in Brazil and corn in the United States are the most commonly used feedstocks for the commercial production of ethanol (first generation biofuels). But their use has been discouraged due to fears that the use of food crops (such as corn and sugarcane) for ethanol production can increase food prices and decrease food supply. However, the conversion of lignocellulosic biomass (second generation biofuels) to ethanol does not create a pressure on existing food or land resources, and therefore presents an ideal opportunity for lucrative commercial bioethanol production.

One source of lignocellulosic biomass is bagasse (the fibrous portion left after stalks of sugarcane are crushed to extract the juice). It has been estimated that with just 50% of the bagasse that is currently being produced from the sugarcane crop in Australia approximately 1.2 billion litres of ethanol can be produced per year. This is equivalent to ~2% of the country’s gasoline consumption in the years 2006.

Hydrolysis of cellulose and hemicellulose in pretreated bagasse requires a number of cellulase and hemicellulase enzymes. The cost of these enzymes is ~30-50 US cents per gallon (~ 10 US cents/ litre) of ethanol and has been as the key barrier to economic production of ethanol from bagasse. Thus, it is necessary to reduce the cost of enzymes for the production of ethanol from bagasse to be economically viable.

It has been suggested that genetically modified (GM) plants which can express multiple cellulases and hemicellulases have the potential to provide lower cost performance cellulosic enzymes. But the concentration of enzymes in different batches of sugarcane is expected to vary with harvesting and cultivation conditions, thereby necessitating the characterization of every batch of cane juice for: 1) Fiscal measures and 2) Process control.

Thus, the aim of this research project is to develop an instrument (called Integrated Cellulase Unit, ICU shown in the figure above) to enable real-time analysis and monitoring of the concentration of multiple cellulases in every incoming batch of GM sugarcane.

ICU Analyser

In a search for an appropriate basic principle for the ICU analyser, a review of the capabilities of High Performance Liquid Chromatography (HPLC), Capillary Zone Electrophoresis (CZE), Isotachophoresis (ITP) and Isoelectric focussing (IEF) have been evaluated.

At this stage of the project, ITP is the choice of technique for the ICU analyser due to its several advantages which includes its ability to concentrate dilute samples, higher sample loading capacity, lower susceptibility to blockages, relaxed requirements on sampling and detection units, and possibility for automation. These advantages are of utmost importance for monitoring the concentration of enzymes in a process environment.

Future work will focus on lowering the limit of detection of these enzymes.

Research Partners and Principal Contacts

Ms Ruchi Gupta, Syngenta Sensors University Innovation Centre, University of Manchester, UK

Prof Peter Fielden, School of Chemical Engineering & Analytical Science, University of Manchester, UK

Prof Nick Goddard, School of Chemical Engineering & Analytical Science, University of Manchester, UK

Mr Ian O'Hara, Centre for Tropical Crops and Biocommodities, QUT, Australia

Would you like to become a research partner? Are there other aspects of this research that we should be bringing in?